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Abstract. The vacuum energies corresponding to massive Dirac fields with the boundary
conditions of the MIT bag model are obtained. The calculations are carried out with the fields
occupying the regions inside and outside the bag, separately. The renormalization procedure for
each of the situations is studied in detail, in particular the differences occurring with respect to
the case when the field extends over the whole space. The final result contains several constants
that undergo renormalization and can be determined experimentally only. The non-trivial finite
parts which appear in the massive case are found exactly, providing a precise determination of
the complete, renormalized zero-point energy in the fermionic case. The vacuum energy behaves
as an inverse power of the mass, for large mass of the field.

1. Introduction

The first modern calculation of the vacuum energy density of a quantum field in the
presence of boundaries is almost 50 years old. As is well known, it is due to Casimir
[1]. Its first measurable consequence was the attraction in an electromagnetic vacuum of
two neutral, infinitely conducting plates (thereafter called the Casimir effect, see for instance
[2]). Previously, Casimir and Polder [3] had explained the attraction of two neutral bodies
in terms of a retarded van der Waals effect. Later, dielectric properties of the materials
considered were taken into account in the more ambitious Lifshitz theory [4]. However,
Casimir [1] was the first to perform a genuine quantum field theoretical calculation using
the concept of zero-point energy (whose physical relevance was somewhat unclear at that
time). The treatment of the divergences resulting from the infinitely many degrees of
freedom was (and still is) the most difficult aspect. Calculations of the vacuum energy have
attracted the interest of many scientists, because it turns out that, in different contexts, the
inclusion of quantum fluctuations about semiclassical configurations is essential. On the
other hand, spherically symmetrical situations are very important for practical applications.
The calculations involved are certainly much more complicated than in the case of systems
with plane boundaries.

§ Also at: Departament ECM and IFAE, Facultat de Fı́sica, Universitat de Barcelona, Diagonal 647, 08028
Barcelona, Spain. E-mail addresses: eli@zeta.ecm.ub.es, elizalde@io.ieec.fcr.es
‖ E-mail address: michael.bordag@itp.uni-leipzig.de
¶ E-mail address: klaus.kirsten@itp.uni-leipzig.de

0305-4470/98/071743+17$19.50c© 1998 IOP Publishing Ltd 1743



1744 E Elizalde et al

Having found an attractive force between parallel plates due to the vacuum energy [1],
the hope was that the same would be true for a spherically symmetric situation. This led
Casimir to the idea that the force stabilizing a classical electron arises from the zero-point
energy of the electromagnetic field within and without a perfectly conducting spherical
shell [5]. Unfortunately, as Boyer [6] first showed, for this geometry the stress is repulsive
[7, 8]. It is known nowadays that the Casimir energy depends strongly on the geometry and
dimension of the spacetime and also on the boundary conditions imposed. This is a very
active field of research (see, for instance, [9, 10]). Let us mention, in the context of the
spherical Casimir effect, the analysis of its dimensional dependence presented in [11, 12].

More recently, the zero-point energy has received considerable attention in the context
of the bag model [13–22] and chiral bag model [23–29]. In these systems, quarks and gluons
are free inside the bag, but are absolutely confined to it, being unable to cross the boundary
surface. This is imposed, mathematically, by appropriate boundary conditions. The sum of
the mesonic, valence-quark and vacuum-quark contributions to the baryonic number have
been found to be independent of the bag radius and of the pion field strength, being the
vacuum-quark contributions—which are analogues of the Casimir effect in QED—essential
for the calculation of baryonic observables. The issue of regularization in this model is
quite non-trivial. It happens that, under specific circumstances, different regularization
procedures can yield different results and real physical problems arise in the calculation of
quark-vacuum contributions to some barionic observables, such as the energy itself.

The calculation of the Casimir energy for massless fermions in the interior of a spherical
bag was already considered 20 years ago [15]. However, in this first attempt only the
divergent terms were isolated. In a reconsideration of the issue, Milton also retained the finite
terms, and introducing suitable phenomenological terms (contact terms) and renormalizing
the respective constants, he was able to obtain a finite Casimir energy [19]. Later, the point
of view was taken that including the exterior modes makes physical sense for the vacuum
[30]. The pertinent calculation was carried out in [21]. In this case, a mutual cancellation
(which can be termed as ‘natural’) of the divergences of the inner and outer spaces occurs.
As a result, finite zero-point energies are obtained. Recently this idea has been revived in
[23]. It has been argued that at high enough energies one expects QCD to show a phase
transition to an unconfined plasma of quarks and gluons and, for that reason, one has to
allow for high-energy quarks living in the exterior region. Finally, still for the massless
field, finite-temperature effects were taken into account in [17, 28].

An obvious generalization of the above considerations is to try to extend them to fields
of non-vanishing mass. As a first step, in the spirit of Bender and Hays [15], the divergences
were determined in [22] and have been discussed in the framework of the field-theoretical
bag model of Creutz and of Friedberg and Lee [31]. Alternatively, as already mentioned
there, one can choose to introduce all the surface and curvature tensions which appear—
with divergent factors—in the Casimir energy, from the outset, with finite coefficients, and
consider the divergent contributions as being absorbed into their renormalization. This rather
pragmatic viewpoint has the one taken in [32] where, using the proper time formalism, it
has been demonstrated that, for a spherical bag, one needs at most the following contact
terms

Eclass= pV + σS + FR + k + h

R
.

As already emphasized there, the parameters of the ‘classical’ phenomenological energy
Eclass are to be determined from the experiments; they cannot be calculated within the
confines of the bag model. The situation is very reminiscent of what happens in quantum
field theory in curved spacetime. In fact, in that context the classical system is the
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gravitational field and, in order to renormalize the energy–momentum tensor of quantum
matter, one needs to use a suitable general Lagrangian for the gravitational field [33]. All
constants appearing in this generalized Lagrangian are to be determined experimentally and
not within the quantum field theory model in the curved background. In our context of
the bag, the classical part is represented by a model for the surface and the interpretation
of the contact terms above is much the same as the one described in the context of the
gravitational Lagrangian. From now on this will be our standpoint in the considerations
that follow.

As is clear from the above argument, for the massive fermionic quantum field in the
bag there is no analysis extending beyond the isolation of the divergent terms. In contrast,
it is the main aim of the present analysis to also retain the finite part of the energy. As
opposed to the massless case, this energy depends in a nontrivial way on the dimensionless
parametermR, m being the mass of the field andR the radius of the bag. This explicit
dependence will be determined here for the first time.

In most of the papers mentioned above a Green function approach has been used in
order to calculate the zero-point energy. An exception is [32], where, in the general setting
of an ultrastatic spacetime with or without boundaries, a systematic procedure which makes
use of zeta-function regularization was developed. In this approach, a knowledge of the
zeta function of the operator associated with the field equation together with (eventually)
some appropriate boundary conditions is needed. Recently, a detailed description of how
to obtain the zeta function for a massive scalar field inside a ball satisfying Dirichlet or
Robin boundary conditions has been given elsewhere by the authors of this work [34, 35].
An analytical continuation to the whole complex plane was obtained there and subsequently
applied to the computation of an arbitrary number of heat-kernel coefficients. In ensuing
papers [36, 37] the functional determinant was considered too and, furthermore, the method
has also been applied to spinors [38, 39] and p-forms [40–42] (for a different approach see
[43]). All the above considerations are purely analytical and quite precise. In order to obtain
explicit values for the Casimir energy, however, a numerical evaluation of an integral and a
sum was necessary. This has been achieved in different cases, in particular for the massless
scalar field and the electromagnetic field [44], partly re-obtaining previous results.

To finish this description of recent previous work, let us mention that in [45] we have
investigated the case of a massive scalar field in the bag. We have discussed there how,
for the case of a massive field—already for ascalar one—non-trivial finite parts which
depend on an adimensional variable involving the mass are present, that need to be properly
renormalized, in order to obtain the corresponding zero-point energy. In this paper we shall
extend our analysis to the case of Dirac fields, thus generalizing our considerations to a
situation which approaches very much the conditions of a realistic MIT bag model.

The organization of the paper is as follows. We shall rely on our previous work (dealing
with the bosonic case) for a precise description of the method employed—which was given
there in full detail [45]—as well as for the particular formulae that are needed in the
subsequent study of the zeta function of the problem we consider here. We felt that to repeat
all this here would not be justified. Consequently, in section 2 we proceed immediately
with the specific description of the model for the case of Dirac fields inside the bag with
boundary conditions corresponding to the MIT bag. Starting from the Dirac equation and
imposing the boundary conditions we will derive an eigenvalue equation in terms of Bessel
functions. This will be the basic equation to solve, which we shall do in the same section
for the interior of the bag. In section 3 we will describe the renormalization scheme used
in the model. Section 4 contains the analogous treatment for the region exterior to the
bag and for the whole space. Adding up the interior and the exterior contributions, we
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will see how the divergences cancel exactly among themselves, as well as the influence
of this cancellation on the compulsory renormalization process. It turns out that important
differences with respect to the non-fermionic case appear concerning this issue, although
we shall argue that, in the end, they will not substantially effect the interpretation of the
physical results. Section 5 is devoted to conclusions. The appendices contain some hints
and technical details that have been used for the derivation of the zeta function (appendix A)
and a full list of the constituents that build up the subtraction terms in the decomposition of
the zeta function, an essential (although rather technical) step in our method (appendix B).

2. Fermions inside the bag

The first task is to derive the energy eigenvalue equations for a Dirac spinor subject to
the MIT bag boundary conditions. The setting we consider first is the Dirac spinor inside
a spherically symmetric bag confined to it by the appropriate boundary conditions. The
coordinates we use are just the spherical ones,r, θ, ϕ, which best adapt to the form of the
bag. Thus, we must solve the equation:

Hφn(r) = Enφn(r) (2.1)

H being the Hamiltonian,

H = −iγ 0γ α∂α + γ 0m (2.2)

with the boundary conditions[
1+ i

(r
r
γ
)]
φn|r=R = 0. (2.3)

These boundary conditions guarantee that no quark current is lost through the boundary.
The separation to be carried out in the eigenvalue equation (2.1) is rather standard

and will not be given in detail here. LetJ be the total angular momentum operator and
K the spin projection operator. Then there exists a simultaneous set of eigenvectors of
H,J2, J3,K and the parityP . The eigenfunctions for positive eigenvaluesκ = j + 1

2 of
K read

φjm = A√
r

(
iJj+1(ωr)�jlm(

r
r
)

−
√
E−m
E+mJj (ωr)�jl′m(

r
r
)

)
(2.4)

whereas, forκ = −(j + 1/2), one finds

φjm = A√
r

(
iJj (ωr)�jlm( rr )√

E−m
E+mJj+1(ωr)�jl′m(

r
r
)

)
. (2.5)

Hereω = √E2−m2, A is a normalization constant and�jlm(r/r) are the well known
spinor harmonics. In order to obtain eigenfunctions of the parity operator we must set
l′ = l − 1 in (2.4) andl′ = l + 1 in (2.5). In both cases,j = 1

2,
3
2, . . . ,∞, and the

eigenvalues are degenerate inm = −j, . . . ,+j .
Imposing the boundary conditions (2.3) on the solutions (2.4) and (2.5), respectively,

one easily finds the corresponding implicit eigenvalue equation. Forκ > 0, it reads√
E +m
E −mJj+1(ωR)+ Jj (ωR) = 0 (2.6)

and forκ < 0, in turn,

Jj (ωR)−
√
E −m
E +mJj+1(ωR) = 0. (2.7)
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Regretfully, it is not possible to find an explicit solution of equations (2.6) and (2.7), but
as we have shown in our previous paper for the case of the scalar field—and will describe
below for the spinor field—the information displayed in (2.6) and (2.7) is already enough
for the calculation of the ground-state energy for massive spinors in the bag.

The regularization of this ground-state energy will be performed by using the zeta-
function method. In short, we consider

E0(s) = − 1
2

∑
k

(E2
k )

1/2−sµ2s Res > s0 = 2

= − 1
2ζ

(int)(s − 1
2)µ

2s (2.8)

and later analytically continue to the values = 0 in the complex plane. Heres0 is the
abscissa of convergence of the series,µ the usual mass parameter and

ζ (int)(s) =
∑
k

(E2
k )
−s . (2.9)

The power of this method lies in the well defined prescriptions and procedures that we have
at hand to analytically continue the series to the rest of the complexs-plane, even when the
spectrumEk is not known explicitly (as will in fact be the case). These procedures have
been developed and described in great detail in [34, 35, 45] so that we can be brief.

The zeta function in the interior space is given by

ζ (int)(s) = 2
∞∑

j= 1
2 ,

3
2 ,...

(2j + 1)
∫
γ

dk

2π i
(k2+m2)−s

× ∂

∂k
ln

[
J 2
j (kR)− J 2

j+1(kR)+
2m

k
Jj (kR)Jj+1(kR)

]
. (2.10)

Here the factor of 2 results from taking into account particles and antiparticles. Using the
method—ordinarily employed in this situation—of deforming the contour which originally
encloses the singular points on the real axis, until it covers the imaginary axis, after simple
manipulations we obtain the following equivalent expression forζ (int):

ζ (int)(s) = 2 sinπs

π

∞∑
j= 1

2 ,
3
2 ,...

(2j + 1)
∫ ∞
mR/j

dz

[(
zj

R

)2

−m2

]−s

× ∂
∂z

ln

{
z−2j

[
I 2
j (zj)

(
1+ 1

z2
− 2mR

z2j

)
+ I ′j 2

(zj)

+2R

zj

(
m− j

R

)
Ij (zj)Ij

′(zj)
]}
. (2.11)

As is usual, we now split the zeta function into two parts:

ζ (int)(s) = Z(int)
N (s)+

N∑
i=−1

A
(int)
i (s) (2.12)

namely a regular one,Z(int)
N , and a remainder that contains the contributions of theN first

terms of the Bessel functionsIν(k) as ν, k → ∞ with ν/k fixed [46]. The numberN of
terms that have to be subtracted is in general the minimal one necessary in order to absorb
all possible divergent contributions into the ground-state energy, equation (2.8). In our case,
N = 3. This is a general procedure, commonly applied in order to deal with such kinds of
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divergence. We obtain

Z
(int)
3 (s) = 2

sinπs

π

∞∑
j= 1

2

(2j + 1)
∫ ∞
mR
j

dz

[(
zj

R

)2

−m2

]−s

× ∂
∂z

{
ln

[
I 2
j (zj)

(
1+ 1

z2
− 2mR

z2j

)
+ I ′2j (zj)+

2R

zj

(
m− j

R

)
Ij (zj)I

′
j (zj)

]
− ln

[
e2jη(1+ z2)

1
2 (1− t)

πjz2

]
−

3∑
k=1

Dk(mR, t)

j k

}
(2.13)

whereη = √1+ z2 + ln[z/(1+√1+ z2)] and t = 1/
√

1+ z2. After renamingmR = x,
the relevant polynomials are given by

D1(t) = t3

12
+
(
x − 1

4

)
t

D2(t) = − t
6

8
− t

5

8
+
(
−x

2
+ 1

8

)
t4+

(
−x

2
+ 1

8

)
t3− t

2x2

2

D3(t) = 179t9

576
+ 3t8

8
+
(
−23

64
+ 7x

8

)
t7+

(
x − 1

2

)
t6+

(
9

320
− x

4
+ x

2

2

)
t5

+
(
x2

2
+ 1

8
− x

2

)
t4+

(
−x

8
+ 5

192
+ x

3

3

)
t3.

(2.14)

The asymptotic contributionsA(int)
i (s), i = −1, . . . ,3, are defined as

A
(int)
−1 (s) =

8 sin(πs)

π

∞∑
j= 1

2

j

(
j + 1

2

)∫ ∞
mR/j

((
xj

R

)2

−m2

)−s √
1+ x2− 1

x

A
(int)
0 (s) = 4 sin(πs)

π

∞∑
j= 1

2

(
j + 1

2

)∫ ∞
mR/j

((
xj

R

)2

−m2

)−s
∂

∂x
ln

√
1+ x2(1− t)

x2

A
(int)
i (s) = 4 sin(πs)

π

∞∑
j= 1

2

(
j + 1

2

)∫ ∞
mR/j

((
xj

R

)2

−m2

)−s
∂

∂x

Di(t)

j i
.

(2.15)

Their small mass expansions can be conveniently represented as

A
(int)
−1 (s) =

R2s

√
π0(s)

∞∑
k=0

(−1)k

k!
(mR)2k

0(k + s − 1
2)

k + s
×[2ζ(2k + 2s − 2, 1

2)+ ζ(2k + 2s − 1, 1
2)]

A
(int)
0 (s) = − R2s

√
π0(s)

∞∑
k=0

(−1)k

k!
(mR)2k

0(k + s + 1
2)

k + s
×(2ζ(2k + 2s − 1, 1

2)+ ζ(2k + 2s, 1
2))

A
(int)
i (s) = −2R2s

0(s)

∞∑
k=0

(−1)k

k!
(mR)2k[2ζ(2k + 2s + i − 1, 1

2)+ ζ(2k + 2s + i, 1
2)]

×
2i∑
a=0

xi,a
0(k + s + a+i

2 )

0( a+i2 )
.

(2.16)
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In this expression, thexi,a are the coefficients of the expansion of the functionsDi(t), i.e.

Di(t) =
2i∑
a=0

xi,at
a+i . (2.17)

Note that here we encounter the same problem that occurred already in the scalar case.
One needs a representation that is useful and valid for an (in principle) arbitrary value of
m. To this end one can actually proceed in different ways, casting the final result in terms
of convergent series or integrals. Ourleitmotiv will be the following: we will always try
to express the final result in terms of the formula which is more appropriate for practical
evaluation (e.g. numerical, in general). This means that, sometimes, instead of having the
closed convergent sums that were universally used in the scalar case, rapidly converging
integrals—better suited for numerical analysis—will be preferred here.

With this aim, we note that after performing thez-integration theA(int)
i (s), for i > 1,

can be written in the following form,

Ai(s) = −4m−2s

0(s)

2i∑
a=0

xi,a

(mR)i+a
0(s + (i + a)/2)
0((i + a)/2)

×[f (s; 1+ a; (i + a)/2)+ 1
2f (s; a; (i + a)/2)] (2.18)

with the definition

f (s; a; b) =
∞∑

ν= 1
2 ,

3
2 ,...

νa
(

1+
( ν

mR

)2
)−s−b

. (2.19)

The remaining task in this case is to calculate thef (s; a; b) for the relevant values at
s = − 1

2. This is a systematic calculation that will be sketched in appendix A. Let us
mention here just that an essential step is to use the simple recurrence:

f (s; a; b) = (mR)2[f (s; a − 2; b − 1)− f (s; a − 2; b)]. (2.20)

In appendix B we give the whole list of starting terms that, in addition to the recurrence
formula (2.20), are strictly necessary for obtaining explicitly all theA(int)

i (s) needed in our
calculation.

3. Discussion of the renormalization

For the discussion of the renormalization let us isolate the divergent terms in the ground-state
energy. By construction they are all contained in the contributionsA

(int)
i (s). Having their

explicit form at hand (see appendices A and B) they can be given quickly. In particular,
we have, for the interior part

resA(int)
−1 (− 1

2) = −
m4R3

6π
+ m

2R

12π
+ 7

480πR

resA(int)
0 (− 1

2) = −
m2R

2π
− 1

24πR

resA(int)
1 (− 1

2) = −
m3R2

π
+ m

2R

12π
+ m

12π
− 1

48πR

resA(int)
2 (− 1

2) = −
m2R

4
−m

(
1

8
+ 1

2π

)
+ 1

128R
+ 1

24πR

resA(int)
3 (− 1

2) =
2m3R2

3π
+m2R

(
1

4
+ 2

3π

)
+m

(
1

8
+ 7

20π

)
− 1

128R
− 97

10 080πR



1750 E Elizalde et al

and, as a result,

resζ (int)(− 1
2) = −

1

63πR
− m

15π
+ m

2R

3π
− m

3R2

3π
− m

4R3

6π
. (3.1)

Here res denotes the residue. These terms constitute the minimal set of counterterms
necessary in order to renormalize our theory.

In the scalar case one had the peculiar situation that there were no divergent contributions
of the form∼ m3, m in the zeta-function description [45]—although in other regularizations
they indeed appear [32]. So, in principle, one had the choice of renormalizing the associated
couplings. In contrast, as seen in (3.1), for spinors the coupling constants ofall terms
appearing have to be renormalized. The minimal set of counterterms, equation (3.1), in the
zeta-function scheme applied here is the same set that is found using a proper time cut-off
[32].

We are led into a physical system consisting of two parts.
(1) A classical system consisting of a spherical surface (‘bag’) with radiusR. Its energy

reads

Eclass= pV + σS + FR + k + h

R
(3.2)

whereV = 4
3πR

3 andS = 4πR2 are the volume and the surface of the bag, respectively.
This energy is determined by the parameters:p pressure,σ surface tension, andF , k, and
h which do not have special names.

(2) A spinor quantum fieldϕ(x) obeying the Dirac equation and the MIT boundary
conditions (2.3) on the surface. The quantum field has a ground-state energy given byE0,
equation (2.8).

It is seen that, in the limitm→ 0, only one divergent contribution proportional to 1/R
survives. As a result, equation (3.2) simplifies toEclass= h/R. For dimensional reasons it
is clear that this is also the form of the finite part of the ground-state energy given byE0.
One thus obtains

E0 = 1

126πR

(
1

s
+ ln(µR)2

)
+ 0.01× 1

R
. (3.3)

The philosophy is now, that the complete energy of the physical system can be written as

E = Eclass+ E0 (3.4)

and that the term proportional to 1/R can be absorbed into the definition of the
phenomenological parameter of the bag model. In the example considered, the energy
then reads

E = 1

R

(
hren+ 1

126π
ln(µR)2

)
(3.5)

with the definition

hren= h+ 1

126πR

1

s
+ 0.01× 1

R
. (3.6)

This is all one can say within the confines of the bag model [32, equation (6.12)]. In
particular,hren is not calculable within the model and has to be determined experimentally.

The dependence onµ has to be viewed as a remainder of the remormalization process.
Milton [19] has used instead a cut-offδ arising from the non-coincidence in time of field
points. Owing to the different schemes employed, there is actually no reason why the finite
part in (3.3) should be equal to that obtained by Milton [19], since it varies by simply
changing the value of the parameterµ.
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However, once the energyE0 is finite and once there is no remormalization ambiguity,
our finite result agrees with the result of Milton. This is the case when the whole space is
considered as described in section 4.

For the massive field the philosophy is the same, but one needs the full classical energy
equation (3.2). First we perform a kind of minimal subtraction, where only the divergent
contribution is eliminated,

p→ p − m4

16π2

1

s
σ → σ − m3

24π2

1

s

F → F + m
2

6π

1

s
k→ k − m

30π

1

s

h→ h− 1

126π

1

s
.

(3.7)

As emphasized before, the quantitiesα = {p, σ, F, k, h} constitute a set of free parameters
of the theory to be determined experimentally. In principle we are free to perform finite
renormalizations of our choice in all of the parameters. In order to give the numerical
analysis of the energy as a function ofmR we are going to perform the specific finite
renormalization to be described now.

First, it is possible to determine the asymptotic behaviour of theAi for m→∞ using
the results of appendices A and B. The finite pieces, not vanishing in the limitm → ∞,
are all of the same type as appearing in the classical energy. Our first finite renormalization
is such that those pieces are cancelled. As a result, only the ‘quantum contributions’ are
finally included, because, physically, a quantum field of infinite mass is not expected to
fluctuate. The resultingAi will be calledA(ren)

i .
ConcerningZ3 we have not been able to determine analytically its complete non-

vanishing behaviour form→∞. Instead, for the numerical analysis performed, as shown
in figure 1, we have constructed a numerical fit ofZ3 using a polynomial of the form

P(m) =
4∑
i=0

cim
i

and then we have subtracted this polynomial fromZ3. As explained above, this method is
nothing else than an ulterior finite renormalization. The result will be denoted byZ

(ren)
3 .

Summing up, we can write the complete energy as

E = Eclass+ E(ren)
0 (3.8)

where Eclass is defined as in (3.2) with the renormalized parametersα and E(ren)
0 =

Z
(ren)
3 +∑3

i=−1A
(ren)
i .

Figure 1 shows the numerical analysis of the energyE
(ren)
0 of the system for this

specific choice of renormalization. The energy exhibits a clear minimum corresponding
to a stabilizing bag radius.

4. Exterior of the bag and a model for the whole space

The analysis of the region exterior to the bag is quite similar to the one carried out for
the interior region. Only some specific differences appear both in the formulae and in the
results. The expression for the zeta function in the exterior region is essentially the same
as that corresponding to the interior, but for the replacement of the BesselIj functions with
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Figure 1. The energyE(ren)
0 as a function of the radius for a specific choice of parameters.

BesselKj functions, namely

ζ (ext)(s) = 2 sinπs

π

∞∑
j= 1

2 ,
3
2 ,...

(2j + 1)
∫ ∞
mR/j

dz ((zj/R)2−m2)−s

× ∂
∂z

ln

[
z2j

(
K2
j (zj)+K2

j+1(zj)+
2mR

zj
Kj(zj)Kj+1(zj)

)]
. (4.1)

In order to avoid volume divergences, in this expression the ‘vacuum’ or volume energy
has already been subtracted. The splitting of the zeta function also has the same aspect as
for the interior region. We have, in particular

A
(ext)
−1 (s) = −A(int)

−1 (s)

A
(ext)
0 (s) = 4 sin(πs)

π

∞∑
j= 1

2

(
j + 1

2

)∫ ∞
mR/j

dz ((zj/R)2−m2)−s
∂

∂z
ln

[
1+ t
t

]
and the polynomials that replace theDi(t) above are here (x = mR)

D1(t) = t

4
+ xt − t3

12

D2(t) = −x
2 t2

2
− t

3

8
− xt

3

2
+ t

4

8
+ xt

4

2
+ t

5

8
− t

6

8

D3(t) = −5t3

192
− xt

3

8
+ x

3t3

3
+ t

4

8
+ xt

4

2
+ x

2t4

2
− 9t5

320

−xt
5

4
− x

2t5

2
− t

6

2
− xt6+ 23t7

64
+ 7xt7

8
+ 3t8

8
− 179t9

576
.

As for the functionsA(ext)
i (s), one obtains the same expressions as before, but for the

replacement of the polynomialsDi(t) with the corresponding polynomialsDi(t).
In principle, the same procedure as above can be applied now in order to obtain an

analytical expression for the whole energy of the exterior space. Instead, we wish to restrict
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ourselves here to the specific changes that show up when discussing the renormalization.
For that, we only have to consider the pole of the differentA

(ext)
i . In particular, for the

residues we have

resA(ext)
−1 (− 1

2) =
m4R3

6π
− m

2R

12π
− 7

480πR
= − resA(int)

−1 (− 1
2)

resA(ext)
0 (− 1

2) =
m2R

2π
+ 1

24πR
= − resA(int)

0 (− 1
2)

resA(ext)
1 (− 1

2) = −
m3R2

π
− m

2R

12π
+ m

12π
+ 1

48πR

resA(ext)
2 (−1

2
) = −m

2R

4
+m

(
1

8
− 1

2π

)
+ 1

128R
− 1

24πR

resA(ext)
3 (− 1

2) =
2m3R2

3π
+m2R

(
1

4
− 2

3π

)
−m

(
1

8
− 7

20π

)
− 1

128R
+ 97

10 080πR
.

This yields for the residue of the whole zeta function at the exterior region

resζ (ext)(− 1
2) =

1

63πR
− m

15π
− m

2R

3π
− m

3R2

3π
+ m

4R3

6π
. (4.2)

Thus the minimal set of counterterms necessary in order to renormalize the theory in the
exterior of the bag is identical to the one needed in the interior of the bag. The classical
system is again described by equation (3.2).

The opposite sign of the coefficients in the divergences (3.1) and (4.2) corresponding to
the odd powers ofR can be easily explained by means of differential geometrical arguments,
just observing that the curvature of the surface of the bag has opposite sign when looked
at from the exterior or from the interior of the bag.

However, the divergences with even powers ofR do not annihilate when adding up the
two contributions from the two sides. In fact, for the zeta function corresponding to the
whole space (internal and external to the bag) we obtain:

resζ(− 1
2) = resζ (int)(− 1

2)+ resζ (ext)(− 1
2) = −

2m

15π
− 2m3R2

3π
(4.3)

therefore, the two free parametersσ andk remain even if the whole space is considered.
The only exception is the case of the massless field, where the two (potentially)

divergent contributions vanish. As a result a finite ground-state energyE0 remains and
no renormalization process is necessary. In that case our result for the energyE0 fully
agrees with the result of Milton [21],

E0 = 1

R
× 0.0204. (4.4)

In detail, forR = 1, the contributions of the single constituents are summarized in tables 1
and 2; on the left forZ(whole)

3 = Z
(int)
3 + Z(ext)

3 , on the right forA(whole)
i = A

(int)
i + A(ext)

i .
In addition forZ(whole)

3 the numerical value is subdivided into the single angular momenta.
The contribution of

∑∞
j= 7

2
has been obtained using the asymptotics of the integrands in

equations (2.13) and (4.1), which is justified numerically.

5. Conclusions

In this paper we have studied in considerable detail a quantum field theoretical system
consisting of a Dirac field with boundary conditions corresponding to those of the MIT bag
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Table 1.

j = 1
2 −0.028 66

j = 3
2 −0.002 67

j = 5
2 −0.000 88

j =∑∞
j= 7

2
−0.001 59

Table 2.

0 A
(whole)
−1

0 A
(whole)
0

0 A
(whole)
1

−0.015 06 A
(whole)
2

0.069 23 A
(whole)
3

model. This is the most natural continuation—in the direction towards approaching truly
realistic physical systems—of previous work where only scalar fields were treated [45].
The application of our techniques can be carried out essentially in the same way as for
the scalar case. Starting from the Dirac equation and imposing the boundary conditions we
have derived an eigenvalue equation in terms of Bessel functions. This basic expression has
then been solved, implicitly, in the regions interior and exterior to the bag surface, by using
contour integration. This has yielded the corresponding zeta function in each of the two
domains. Extraction of the singular part of the zeta function has also been done exactly.
Adding up the contributions of the two parts, not all divergences cancel among themselves,
what theoretically influences the playground of the ulterior renormalization process.

When considering a massive fermionic quantum field only in the interior or exterior of
the bag, we have seen that in order to renormalize the ground-state energyE0 we need a
classical energy containing five free parameters. Adding up interior and exterior regions two
of the parameters remain (for the case of non-vanishing mass). As repeatedly emphasized,
these parameters cannot be fixed theoretically, but have to be numerically adjusted by means
of direct comparison with the physical system described by the model [32, 45]. In this,
we must confess, we are still a bit far from our final aim, in the sense that, as it stands,
our model cannot be considered yet to describe a realistic physical situation. This must be
left to future work, given the complexity of the proposal. In any case, we should like to
point out the rigour and strict systematicity of the approach we have used here, and also its
relative simplicity, if we compare it with other methods of similar strength and ambition.

Specializing our considerations to the massless field, we can compare our results with
the analysis of Milton [19, 21]. Considering only the interior of the bag, we have seen that
we cannot calculate the phenomenological parameterh. This issue depends very much on
the regularization scheme chosen. As mentioned already, in Milton’s approach divergences
are of a different type. Specifically, no contact termh/R was necessary there; instead, the
parameterh was calculated. However, the value ofh obtained (adding up the contributions
of free gluon and fermionic fields) is not in agreement withh determined from mass fits
[47]. In our opinion this is no severe problem because as explained,h is not calculable
within the bag model but rather fixed by the mass fits. In addition, it should be noted that
perfectly acceptable fits can be made to the hadron spectrum in the bag model with the
calculated Casimir energy if an additional constant force parameter, as in (3.2), is included.
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When considering the massless field in the whole space no divergences at all appear
and no renormalization is necessary. The finite value ofE0 obtained agrees with the value
of Milton and may be contemplated as the Casimir energy of the field for this configuration.

Going beyondm = 0 we have determined the dependence ofE0 as a function of the
dimensionless parametermR. In doing this we have continued the analysis in [22], where
only the divergent part had been determined. A notable result of our analysis, that we would
like to mention, is that the Casimir energy may exhibit a clear minimum associated with a
stable bag radius (see figure 1). Comparing such behaviour with the one corresponding to
the scalar field, where a maximum occurred, the difference can clearly be traced back to
the anticommuting nature of the spinor fields, which shows up as a sign in the definition of
the ground-state energy.

Another interesting observation is that, in contrast to the case of parallel plates, the
behaviour of the Casimir energy for large values ofmR is not exponentially damped.
Instead, as neatly observed from the representations of theAi(s) given in appendices A and
B, we find a behaviour in inverse powers of the mass. This is directly connected with the
non-vanishing of the extrinsic curvature at the bag.

Possible continuations of our approach go in the direction of finite temperature and finite
densities, as considered already for massless fermions in [17, 28, 29]. A natural question to
ask concerns the possible appearance of a first-order phase transition from a hadronic bag
to a deconfined quark–gluon plasma within our framework. This is left for future work.
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Appendix A. Explicit representations for the asymptotic contributions inside the bag

The essential formulae for the basic seriesf (s; a; b), equation (2.19), in the calculation are
the following:

∞∑
ν= 1

2 ,
3
2 ,...

ν2n+1

(
1+

(ν
x

)2
)−s
= 1

2

n!0(s − n− 1)

0(s)
x2n+2

+(−1)n2
∫ x

0
dν

ν2n+1

1+ e2πν

(
1−

(ν
x

)2
)−s

+(−1)n2 cos(πs)
∫ ∞
x

dν
ν2n+1

1+ e2πν

((ν
x

)2
− 1

)−s
(A.1)

∞∑
ν= 1

2 ,
3
2 ,...

ν2n

(
1+

(ν
x

)2
)−s
= 1

2

0(n+ 1
2)0(s − n− 1

2)

0(s)
x2n+1

−(−1)n2 sin(πs)
∫ ∞
x

dν
ν2n

1+ e2πν

((ν
x

)2
− 1

)−s
. (A.2)



1756 E Elizalde et al

Using partial integrations one can obtain representations valid for values ofs needed for
theAi(s). One obtains, for example, the following expansions arounds = − 1

2:

∞∑
ν= 1

2 ,
3
2 ,...

ν3

(
1+

(ν
x

)2
)−s− 3

2

= 1

2

0(s − 1
2)

0(s + 3
2)
x4

−x2
∫ ∞

0
dν

d

dν

[
ν2

1+ e2πν

]
ln |ν2− x2| +O(s + 1

2)

∞∑
ν=1 1

2 ,
3
2 ,...

ν2

(
1+

(ν
x

)2
)−s− 3

2

= −π
2
x3+ π x3

1+ e2πx
+O(s + 1

2)

showing clearly that one can obtain quickly convergent integrals, respectively expressions
for the effective numerical evaluation of the involved sums. All the particular values that
are necessary to give theAi(s), i = 1, 2, 3, explicitly (in addition to the recurrence (2.20))
are listed in appendix B.

The first two leading asymptotic contributions,A−1 and A0 have to be treated in a
slightly different way, as has been explained in detail in [45]. For completeness we give
the final results

A−1(s) =
(

1

s + 1
2

− lnm2

)(
−R

3m4

12π
+ m

2R

24π
+ 7

960πR

)
+ R

3m4

24π
(1− 4 ln 2)

−m
3R2

6
+ m

2R

24π
[2 ln(2mR)− 1]+ 7

960πR
[1+ 2 ln(2mR)]

− 2

πR

∫ ∞
0

dν ν

1+ e2πν
(ν2−m2R2) ln |ν2−m2R2|

−4m2R

π

∫ ∞
0

dν ν

1+ e2πν

(
ln |ν2−m2R2| + ν

mR
ln

∣∣∣∣mR + νmR − ν
∣∣∣∣)

+m
2R

2π
ln(1+ e−2πmR)− 1

R

∫ ∞
mR

dν ν2

1+ e2πν
− m

2R

π

∫ 1

0
dy ln(1+ e−2πmRy)

(A.3)

and

A0(s) = −
(

1

s + 1
2

− lnm2

)(
1

48πR
+ m

2R

4π

)
+ m

3R2

6
+ m

2R

π

[
5

4
− 1

2
ln 2− ln(mR)

]
− ln 2

24πR
− 2

R

∫ ∞
mR

dν ν2

1+ e2πν
−m3R2

∫ 1

0

dx

1+ e2πmR
√
x

+ 1

πR

∫ ∞
0

dν ν

1+ e2πν
ln

∣∣∣∣1− ( ν

mR

)2
∣∣∣∣

−m
2R

2π

∫ ∞
0

dν

(
d

dν

1

1+ e2πν

)∫ 1

0

dx√
x

ln |m2R2x − ν2|. (A.4)

This completes the description of our procedure to obtain well-suited representations (for
numerical evaluation) of all theAi that are needed for the calculation of the Casimir energy
of the spinor inside the bag.
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Appendix B. Full list of constituent terms f(a; b) to be used in addition to the
recurrence formula

To simplify the expressions, we shall here usex for mR. In addition to the above recurrence,
in order to determine all theAi(s) explicitly one needs the followingf (a; b)’s (we shall
use the notationf (a; b) = f (− 1

2; a; b)):

f (0; 1
2) = 0 f (1; 1

2) = − 1
2x

2+ 1
24

d

ds

∣∣∣∣
s=− 1

2

f (s; 0; 1
2) = −πx − 2π

∫ ∞
x

dν
1

1+ e2πν

d

ds

∣∣∣∣
s=− 1

2

f (s; 1; 1
2) = −

1

2
x2− 2

∫ ∞
0

dν
ν

1+ e2πν
ln

∣∣∣∣1− (νx )2
∣∣∣∣

f (0; 1) = x

2(s + 1
2)
+ x ln 2+ 2x2

∫ ∞
x

dν
d

dν

(
1

ν(1+ e2πν)

)[(ν
x

)2
− 1

]1/2

f (0; 3
2) =

πx

2
− πx

1+ e2πx

f (1; 3
2) =

x2

2(s + 1
2)
+ x2 ln x + x2

∫ ∞
0

dν

(
d

dν

1

1+ e2πν

)
ln |ν2− x2|

f (1; 1) = 2x2
∫ x

0
dν

(
d

dν

1

1+ e2πν

)[
1−

(ν
x

)2
]1/2

f (1; 2) = −2x2
∫ x

0
dν

(
d

dν

1

1+ e2πν

) ∣∣∣∣1− (νx )2
∣∣∣∣−1/2

f (2; 2) = x3

2(s + 1
2)
+ (ln 2− 1)x3+ 2x4

∫ ∞
x

dν

[
d

dν

(
1

ν

d

dν

ν

1+ e2πν

))[(ν
x

)2
− 1

]1/2

f (2; 5
2) =

π

4
x3− π

2
x4

(
1

ν

d

dν

ν

1+ e2πν

) ∣∣∣∣
ν=x

f (3; 5
2) =

x4

2(s + 1
2)
+ (ln x − 1

2)x
4+ x

4

2

∫ ∞
0

dν

[
d

dν

(
1

ν

d

dν

ν2

1+ e2πν

)]
ln |ν2− x2|

f (3; 3) = −2

3
x4
∫ x

0
dν

[
d

dν

(
1

ν

d

dν

ν2

1+ e2πν

)][
1−

(ν
x

)2
]−1/2

(B.1)

f (4; 3) = x5

2(s + 1
2)
+ (3 ln 2− 4)

x5

3
+ 2x6

3

∫ ∞
x

dν

[
d

dν

(
1

ν

d

dν

1

ν

d

dν

ν3

1+ e2πν

)]
×
[(ν
x

)2
− 1

]1/2

f (4; 7
2) =

3π

16
x5− π

8
x6

(
1

ν

d

dν

1

ν

d

dν

ν3

1+ e2πν

) ∣∣∣∣
ν=x

f (5; 7
2) =

x6

2(s + 1
2)
+ (ln x − 3

4)x
6+ x

6

8

∫ ∞
0

dν

[
d

dν

(
1

ν

d

dν

1

ν

d

dν

ν4

1+ e2πν

)]
ln |ν2− x2|

f (5; 4) = −2x6

15

∫ x

0
dν

[
d

dν

(
1

ν

d

dν

1

ν

d

dν

ν4

1+ e2πν

)][
1−

(ν
x

)2
]−1/2
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f (6; 4) = x7

2(s + 1
2)
+ (ln 2− 23

15)x
7+ 2x8

15

∫ ∞
x

dν

[
d

dν

(
1

ν

d

dν

1

ν

d

dν

1

ν

d

dν

ν5

1+ e2πν

)]
×
[(ν
x

)2
− 1

]1/2

f (6; 9
2) =

5π

32
x7− π

48
x8

(
1

ν

d

dν

1

ν

d

dν

1

ν

d

dν

ν5

1+ e2πν

) ∣∣∣∣
ν=x

f (7; 9
2) =

x8

2(s + 1
2)
+ (ln x − 11

12)x
8+ x

8

48

∫ ∞
0

dν

[
d

dν

(
1

ν

d

dν

1

ν

d

dν

1

ν

d

dν

ν6

1+ e2πν

)]
× ln |ν2− x2|.

Using these formulae all theAi(s) are obtained immediately and, what is important, always
in the most suitable fashion for practical evaluation (as explained before).
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